Impianti Dentali produzione

Di seguito riportiamo una breve lista dei maggiori produttori di impianti dentali italiani ed esteri.

I nomi delle ditte sono elencati in ordine alfabetico e non per importanza o fatturato.

La produzione di impianti dentali si è notevolmente evoluta negli ultimi anni grazie anche all’utilizzo delle nuove tecnologie che hanno permesso di oltrepassare i limiti imposti in passato.

Molte case produttrici hanno iniziato ricerche e sperimentazioni autonome arrivando a brevetti, metodiche di costruzione e di impiego degli impianti dentali che possiamo definire proprietarie.

.

Cliccando su ciascun nome è possibile visualizzare la pagina di dettaglio con breve descrizione e link al sito ufficiale della ditta selezionata.

  1. Alpha Bio
  2. Bego
  3. Bicon
  4. BIOHORIZONS Implant Systems
  5. BIOMET 3i
  6. Biotech Dental
  7. DENTSPLY Implants
  8. Euro Teknika
  9. Implants Diffusion International
  10. Leader Italia
  11. Leone ortodonzia e implantologia
  12. MIS
  13. Neoss
  14. Nobel Biocare
  15. OsteoCare Implant System
  16. Osteo-Ti
  17. STERI OSS
  18. Straumann
  19. SWEDEN & MARTINA
  20. Timplant dental implants
  21. Zimmer

COSA E’ IL TITANIO? MATERIALE USATO PER GLI IMPIANTI DENTALI? FORTE COME L’ACCIAO

Il titanio è l’elemento chimico della tavola periodica degli elementi che ha come simbolo Ti e numero atomico 22. È un metallo del blocco d, leggero, resistente, di colore bianco metallico, lucido, resistente alla corrosione. Il titanio viene utilizzato nelle leghe leggere resistenti e nei pigmenti bianchi; si trova in numerosi minerali (i principali sono il rutilo e l’ilmenite).

Cenni storici

Il titanio (dal latino Titanus, Titano, nome del 12° figlio di Gea e Urano [2] tra i titani) fu scoperto nel 1789 nei minerali di rutilo dal chimico tedesco Heinrich Klaproth.[2] Qualche anno dopo (nel 1791) il presbitero inglese William Gregor riconobbe la sua presenza nell’ilmenite. Nel 1795 Klaproth battezzò l’elemento con il nome dei Titani della mitologia greca.[2] Il titanio metallico puro (99,9%) venne preparato per la prima volta nel 1910 da Matthew Albert Hunter tramite riscaldamento di TiCl4 con del sodio a 700-800 °C.

Il metallo di titanio non venne usato al di fuori dei laboratori fino al 1946 quando William Justin Kroll dimostrò che il titanio poteva essere prodotto commercialmente tramite riduzione del tetracloruro di titanio con il magnesio (processo Kroll, il metodo oggi più usato).

Caratteristiche

Il titanio è un elemento metallico che è ben conosciuto per la sua resistenza alla corrosione (quasi quanto il platino) e per il suo alto rapporto resistenza/peso. È leggero, duro, con una bassa densità. Allo stato puro è abbastanza duttile, lucido, di colore bianco metallico. Tuttavia le leghe di titanio non sono facilmente lavorabili, e la difficoltà di lavorazione alle macchine utensili è paragonabile a quella dell’acciaio inossidabile, notoriamente il più problematico da lavorare per asportazione di truciolo. Il punto di fusione relativamente alto di questo elemento lo rende utile come metallo refrattario. Il titanio è resistente come l’acciaio ma il 40% più leggero, pesa il 60% in più dell’alluminio ma con una resistenza doppia. Queste proprietà rendono il titanio molto resistente alle forme usuali di fatica dei metalli.

Questo metallo forma una patina di ossido passivo se esposto all’aria, ma quando è in un ambiente libero da ossigeno è molto duttile. Il titanio, che brucia se riscaldato nell’aria, è anche l’unico elemento che brucia in atmosfera di azoto. Il titanio è resistente all’acido solforico diluito e all’acido cloridrico, oltre che ai gas di cloro, alle soluzioni di cloruri e alla maggior parte degli acidi carbossilici.

Esperimenti hanno mostrato che il titanio naturale diventa altamente radioattivo se bombardato con nuclei di deuterio, emettendo principalmente positroni e raggi gamma. Il metallo è dimorfico con forma alfa esagonale che diventa beta cubica molto lentamente, alla temperatura di circa 880 °C. Quando raggiunge il colore rosso il titanio si combina con l’ossigeno e quando raggiunge i 550 °C si combina con il cloro.

A temperatura ambiente si passiva per formazione di una patina di ossido, ad alta temperatura reagisce rapidamente con ossigeno e reagisce anche con idrogeno, azoto e alogeni. Non è attaccato dagli acidi fatta eccezione dell’acido fluoridrico che forma fluorocomplessi solubili, gli acidi ossidanti accentuano la formazione della patina passivante di ossido, neanche gli alcali acquosi a caldo lo attaccano.

Isotopi

Il titanio riscontrabile in natura è composto da cinque isotopi stabili; 46Ti, 47Ti, 48Ti, 49Ti e 50Ti, di questi il 48Ti è il più abbondante (73,8%). 11 radioisotopi sono stati prodotti, i più stabili dei quali sono il 44Ti con emivita di 63 anni, il 45Ti ha emivita di 184,8 minuti, il 51Ti di 5,76 minuti, e il 52Ti di 1,7 minuti. Tutti i restanti isotopi radioattivi hanno emivita inferiore ai 33 secondi, e la maggior parte di questi ha emivita sotto al mezzo secondo.

Gli isotopi del titanio variano in peso atomico da 39,99 u (40Ti) a 57,966 u (58Ti). La modalità di decadimento primaria prima dell’isotopo stabile più abbondante è la cattura di elettrone, la modalità primaria dopo l’isotopo più diffuso è l’emissione beta. I prodotti del decadimento prima del 48Ti sono isotopi di scandio e i prodotti primari dopo il 48Ti sono isotopi di vanadio.

Disponibilità

Il titanio non si trova libero in natura, ma è il nono elemento per abbondanza nella crosta terrestre (0,6% della massa) ed è presente in molte rocce ignee e nei sedimenti da esse derivanti. Si trova principalmente nei seguenti minerali: anatasio, brookite, ilmenite, leucoxene, perovskite, rutilo e titanite, nonché nei titanati e in molti minerali ferrosi. Di questi minerali solo l’ilmenite, il leucoxene e il rutilo hanno un’importanza economica significativa. Significativi depositi di minerali di titanio si trovano in Australia, Scandinavia, Nord America e Malesia.

Poiché il titanio metallico può bruciare in atmosfera pura di azoto ed alle alte temperature reagisce facilmente con l’ossigeno e il carbonio, è difficoltoso preparare il metallo di titanio puro. Il metallo si trova nei meteoriti ed è stato rintracciato nel Sole e nelle stelle di tipo M. Le rocce portate dalla Luna durante la missione Apollo 17 erano composte per il 12,1% di TiO2. Il titanio si trova inoltre nelle ceneri di carbone, nelle piante ed anche nel corpo umano.

Produzione

Una barra di titanio ultrapuro (99,995%) ottenuta tramite il processo van Arkel-de Boer. La barra pesa circa 283 g, ha una lunghezza di 14 cm e un diametro di 25 mm.

Il primo processo di produzione commerciale del titanio è stato il processo van Arkel-de Boer, ma oggi viene ottenuto tramite riduzione di TiCl4 con il magnesio, un processo sviluppato nel 1946 da William Justin Kroll, e dal processo Hunter, analogo al processo Kroll ma effettuato con sodio metallico. Questo processo è complicato e costoso, ma un nuovo procedimento, chiamato metodo “FFC-Cambridge” potrebbe rimpiazzarlo. Questo nuovo metodo usa come materiale di base la polvere di diossido di titanio (che è una forma raffinata di rutilo) per ottenere il prodotto finale, un flusso continuo di titanio fuso adatto all’utilizzo immediato per la manifattura di leghe.

Si spera che il metodo FFC-Cambridge renderà il titanio un materiale meno raro e costoso per l’industria aerospaziale e il mercato dei beni di lusso, e che verrà impiegato in molti prodotti attualmente fabbricati con alluminio o acciai speciali.

Applicazioni

Un orologio rivestito in titanio.

La facciata del Guggenheim Museum, a Bilbao, rivestita da pannelli in titanio.

All’incirca il 95% del titanio viene consumato in forma di diossido di titanio (TiO2), nelle vernici, nella carta, nei cementi per renderli più brillanti e nelle plastiche. Le vernici fatte con il biossido di titanio riflettono molto bene la radiazione infrarossa e sono quindi molto usate dagli astronomi.

Grazie alla loro resistenza (anche alla corrosione), leggerezza, e capacità di sopportare temperature estreme, le leghe di titanio vengono utilizzate principalmente nell’industria aeronautica e aerospaziale, anche se il loro utilizzo in prodotti di consumo quali: mazze da golf, biciclette, componenti motociclistici e computer portatili, sta diventando sempre più comune. Il titanio viene spesso messo in lega con: alluminio, ferro, manganese, molibdeno e altri metalli.

Il carburo di titanio (TiC; peso specifico 4,93; punto di fusione 2 940 °C) il nitruro di titanio (TiN; peso specifico 5,40; punto di fusione 2 960 °C) e più recentemente, il derivato carbonitrurico (Ti10C7N3; peso specifico 5,02; punto di fusione 3 520 °C) sono composti altamente refrattari, inerti sotto le comuni condizioni di temperatura e resistenti all’attacco della maggior parte degli acidi minerali ed alcali.

Per tali ragioni sono impiegati nella costruzione di utensili e macchinari che possiedono parti destinate alle alte velocità con attrito, nel rivestimento di crogioli per contenere acidi o basi molto forti e componenti di missili sottoposti a usura termica (ad esempio ugelli).

Altri impieghi:

  • Grazie all’eccellente resistenza all’acqua di mare, viene usato per fabbricare parti dei propulsori marini.
  • Un uso tecnologico molto importante, legato alla sua resistenza alle soluzioni saline, è come materiale metallico di contatto con i fluidi ad alta concentrazione salina negli impianti di dissalazione dell’acqua marina.
  • Viene utilizzato per produrre gemme artificiali relativamente morbide.
  • Il tetracloruro di titanio (TiCl4), un liquido incolore, viene usato per ottenere l’iridescenza del vetro, e poiché emette un fumo denso nell’aria umida, viene anche usato per la fabbricazione di fumogeni.
  • In aggiunta ad essere un importante pigmento, il biossido di titanio viene impiegato nei filtri solari grazie alla sua capacità di proteggere la pelle.
  • Ha la proprietà di essere biocompatibile, in quanto lo strato di ossido che forma in superficie fornisce un valido attacco per i tessuti biologici, in particolare quello osseo. Per questo motivo il titanio puro CP4 e la lega a base di titanio Ti6Al4V vengono utilizzati nelle componenti protesiche di anca e ginocchio, per la fabbricazione di clips chirurgiche da sutura permanente ed in odontoiatria per la realizzazione di impianti dentali[3]. Tuttavia dato l’alto coefficiente di frizione non viene mai utilizzato come componente di giunzione articolare.
  • Il suo essere inerte e la colorazione attraente lo rendono un metallo popolare per l’uso nei piercing.
  • Il titanio viene usato per le lenti degli occhiali.
  • Il carburo ed il nitruro di titanio (TiC e TiN) vengono utilizzati nella fabbricazione di inserti per utensili adatti al taglio dei metalli ad alta velocità, cioè i cosiddetti inserti in “metallo duro”. In particolare il carburo di titanio viene utilizzato, insieme al carburo di tungsteno (WC), al cobalto e ad altri carburi (carburo di niobio e carburo di tantalio) per realizzare il corpo degli inserti, mentre il nitruro di titanio serve per il rivestimento superficiale degli inserti.
  • L’Alluminuro di Titanio, grazie alle doti di tenacità ad alte temperature, leggerezza e resistenza all’ossidazione sta lentamente iniziando a soppiantare le Superleghe base nichel nella produzione delle pale utilizzate nelle turbine dei motori aeronautici.
  • Facendo attraversare una corrente elettrica a temperature molto basse in stati sottili di nitruro di titanio, si è scoperto il fenomeno detto di superisolamento.
  • In alcune occasioni, è stato utilizzato per la fabbricazione di penne stilografiche. Nel 1970, all’indomani dell’allunaggio, la Parker produsse per un breve periodo la T-1, una stilografica interamente in titanio, in omaggio ai materiali usati nella missione spaziale. Nel 2000 la casa produttrice italiana Omas produsse una serie di stilografiche del modello classico a dodici facce “arte italiana” interamente in titanio (sia il corpo che il pennino). La serie venne denominata T-2 ed è stata commercializzata solo per un breve periodo.

Grazie alla sua resistenza alle soluzioni saline, il titanio viene impiegato nella fabbricazione delle casse degli orologi.